
.

© Copyright IBM Corporation, 2007. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders

Technical report:
Microsoft SQL Server 2000 and

IBM System Storage N series with
SnapMirror technology

Disaster Recovery

Document NS3108-0

July 30, 2007

Table of contents
Abstract..1
Introduction ...1
Description of SnapMirror technology..1
General assumptions and requirements ..2
Prerequisites ...2

Filer prerequisites .. 2
SQL Server prerequisites .. 3
Network prerequisites .. 3

Setting up a SnapMirror process for SQL Server 2000 data file storage...............................4
Step one (implemented on the source filer)... 4
Step two (implemented on the destination filer) .. 4
Step three (implemented on both the source and destination filers) ... 5

SnapMirror software operation..6
Disaster recovery—breaking the mirror ...7
Resyncing the mirror ..10
Conclusions...11
Support ..11
Caveats ..11
Trademarks and special notices..12

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

1

Abstract
SnapMirror technology is efficient, low-cost, and reliable. It offers unique configuration choices
and even delivers proactive data leverage capabilities. This white paper explains that IBM
System Storage N series with SnapMirror establishes a user-friendly, dependable, and flexible
disaster recovery solution for Microsoft SQL Server.

Introduction
This document describes techniques for setting up a disaster recovery configuration for Microsoft® SQL
Server databases using IBM® System Storage® N series with SnapMirror® technology. Specifically, we
cover the following issues:

 Description of the SnapMirror technology and its approach to disaster recovery
 The infrastructure required to support SnapMirror technology
 How to set up a SnapMirror for use in a Microsoft SQL Server environment
 How disaster recovery works in practice
 Resyncing the mirror following recovery from a disaster.

Hardware and software used by the test environment are:

 Two IBM N series filers and IBM System Storage N series with Data ONTAP®
 SQL Server 2000, Enterprise Edition
 Microsoft Windows® 2000 Advanced Server.

The methodology described in this paper shows how to recover a database to the same consistent state it
was at when the SnapMirror shot was taken; committed transactions after the SnapMirror shot was taken
are lost. If the requirement is to recover to the last committed transaction prior to the disaster, the
database log file has to be located outside the filer on a medium that is accessible from the recovering
system.

Description of SnapMirror technology
IBM System Storage N series with SnapMirror technology provides asynchronous mirroring of data
between filer volumes. Data on the source volume is periodically replicated to the target at a user-
definable time interval, with the range being from one minute to one month. At the end of each replication
event, the mirror target volume becomes an exact block-for-block copy of the mirror source volume. At
that point, the two volumes share identical data content and characteristics. The mirror is initialized by
effectively copying the entire source volume to the target volume. Once this initial copy is complete,
replication events thereafter copy only changed blocks from the source volume to the target volume. This
provides a highly efficient data replication mechanism.

Architecturally SnapMirror software is a logical extension of the IBM System Storage N series with
WAFL® (write anywhere file layout) file system, particularly the IBM System Storage N series with
Snapshot™ feature. Using Snapshots, one can create a read-only copy of an entire filer volume. This copy
is made by essentially saving only changed blocks after a particular point in time. Two sequential
Snapshots can then be compared and the differences identified. Since this comparison takes place at the
block level, only the changed blocks need be sent to the mirror target. By implementing the update
transfers asynchronously, data latency issues inherent with remote synchronous mirroring techniques are

2

eliminated. The elegance of these two design features becomes particularly apparent when running
mirror pairs over WAN topologies.

SnapMirror scheduling is configurable by the filer administrator, and since SnapMirror creates and uses
its own Snapshots, is it not possible for the database server to know when a SnapMirror file will be
updated. Therefore, if the requirement is to use the database in the mirror as a reporting database or to
recover from soft database error (database objects deleted or modified by operational mistake) than
another snapshot has to be used. Snapshots created on the source filer are automatically migrated to
mirror filer, and SQL Server can attach to the database in the mirrored snapshot.

General assumptions and requirements
In delivering this technical report, it is assumed that the reader is familiar with Microsoft SQL Server, the
operation of IBM N series filers, and the Windows operating system.

The examples in this technical report assume the following:

 The name of the source filer is bg.
 The name of the target filer is lg.
 The name of the administrative user account within SQL Server is internal and the password of

this user is microsoft.
 All data is stored in the mssql directory on vol2 on bg.
 All data is mirrored to vol2 on lg.

Prerequisites
Following are the prerequisites for using SnapMirror on an IBM N series filer with Microsoft SQL Server:

Filer prerequisites
 Both target and source filers must be running the same Data ONTAP version. The respective

software version must be Data ONTAP (7.1 or higher).
 Both the SnapMirror and Common Internet File System (CIFS, for Windows networking) licenses

must be enabled on all participating filers.
 An offline volume must be created or an existing volume must be taken offline. This volume will

be the mirror volume. If using an existing volume, all premirror data on that volume will be
overwritten once the baseline transfer has taken place. Because the contents of this volume will
be overwritten by the SnapMirror volume data, this volume should not be the root volume.

 The source volume must not be a mirror and it must be online.
 The capacity of the mirror volume must be greater than or equal to the capacity of the source

volume. The configuration of these volumes can differ geometrically (e.g., 16x18GB drives vs.
8x36GB drives), however, any geometric mismatch (where the mirror volume capacity is less
than the source volume capacity) will result in a significant performance penalty.

 The source volume must be large enough to house the database(s) being mirrored.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

3

SQL Server prerequisites
 A Microsoft SQL Server install on Windows Server is required to implement the exercises in this

document.
 Both the SQL Server database data and log files must reside on the source volume.

Network prerequisites
 A network connection is required between the SQL Server machine and the filer. 100BaseT,

Fiber Distributed Data Interface (FDDI), and Gigabit Ethernet are all viable options. The faster the
network, the better the performance.

 A robust network connection between the source filer and the target filer is required. It must have
sufficient bandwidth to accommodate the anticipated data change rate and SnapMirror software
overhead.

 The network connection type should be based on the following parameters:
 Data transmission costs between the source and target filers
 The source volume size
 The data change rate
 The SnapMirror software update schedule.

In addition to the data change block transfers, each replication event requires an updated WAFL block
map defined as 0.1% of the source volume size. The block map file is transferred for each mirror iteration
regardless of the number of changed blocks. For example, a 250GB volume mirror will transfer a 250MB
block map file plus all changed data blocks since the last Snapshot.

Following is the network connection we used to test this solution:

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

4

Setting up a SnapMirror process for SQL Server 2000
data file storage
Mirrors are as simple to set up and manage as filer volumes. Once all prerequisites have been met, the
following must be done to initiate the process:

Step one (implemented on the source filer)

Add the host name of the destination filer to the /etc/snapmirror.allow file on the source filer. In our test
environment, lg is the name of the destination filer, so the /etc/snapmirror.allow file on the source filer
(bg) appears as follows (this file can be viewed by mapping a drive to the root volume of the filer and
looking in the /etc directory):
 lg

Note: The filer does not ship with a default /etc/snapmirror.allow file. Rather, it must be created using a
text editor.

Step two (implemented on the destination filer)

Specify the following in the /etc/snapmirror.conf file on the destination filer:

 The source filer and volume
 The target filer and volume
 The maximum network bandwidth usage throttle
 A list of incremental update times in minutes, hours, days, and months.

In our testing environment, the /etc/snapmirror.conf file on the destination filer lg appears as follows
(see Step One for how to view this file):

 bg:vol2 lg:vol2 kbs=5000 * * * *

The above text sets up the following SnapMirror software parameters:

 The vol2 volume on bg will be replicated onto the vol2 volume on lg
 A 5,000KB per second maximum throttle is set on the mirror
 The SnapMirror interval is set to occur every minute of every hour of every day of every week of

every month.

Note: The filer is not shipped with a default /etc/snapmirror.conf file. Rather, it must be created using a
text editor.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

5

Step three (implemented on both the source and destination filers)

At the command line of both the source and destination filers, enter the following command:
 vol snapmirror on

It is important to note that the vol snapmirror on command does not persist across filer reboots. Rather,
the command must also be put in the /etc/rc files of both source and destination filers. (Note: this
command can be placed anywhere after the network interfaces are defined.) If placing the vol
snapmirror on command in the /etc/rc file, following is how this file may appear (see Step one for how
to view this file):

#Regenerated by registry Wed Apr 21 10:10:28 PDT 1999
#Auto-generated by setup Mon Apr 19 18:22:22 GMT 1999
hostname bg
ifconfig e0 `hostname`-e0 mediatype auto netmask 255.255.252.0
route add default 10.153.4.1 1
routed on
options dns.domainname 2700-1.netapp.com
options dns.enable on
...
vol snapmirror on

With SnapMirror turned on, the destination filer will read the /etc/snapmirror.conf file and, at the next
scheduled mirror update, establish a connection with the source filer. If a baseline version of the mirror
does not exist, the filer takes a Snapshot of the source volume and transfers all the data in the Snapshot
from the source volume to the mirror. If a vol status command is issued at this point, the following result
will appear (noting that, in this example, vol2 is our mirror volume):
Command:

 bg>vol status

Result:

Volume State Status Options

vol0 online normal root, nosnap=on

vol1 online normal

vol2 online snapmirrored

Subsequent updates to the mirror are made according to the schedule specified in the
/etc/snapmirror.conf file.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

6

SnapMirror software operation
SnapMirror has two distinct phases: initialization and incremental update. The initialization phase consists
of a level 0 replication event in which a Snapshot is created on the source volume and then sent in its
entirety to the target volume. The amount of time required to replicate the entire source volume over to
the target volume depends on many factors, including the network connection. For example, a 250GB
mirror initialization that would take approximately 7.5 hours to complete across a 100BaseT full-duplex
link may take 1.5 hours across a gigabit link. The level 0 event serves to initialize or "seed" the mirror
volume since it contains every block in the source volume as of the time the Snapshot was created.

After mirror initialization is complete, the target filer(s) examines its /etc/snapmirror.conf file every
minute to see if there are any scheduled updates. This allows for modification of the mirror's configuration
without disrupting the mirror. When an incremental update schedule time is due, a new Snapshot is taken
and compared to the previous Snapshot. The different blocks and block map file are sent to the mirror
target. In contrast to the level 0 initialization, the data mirrored is typically much smaller. Note that at all
times the mirror target file system is in a consistent state.

Several special cases should be noted:

 If an initialization (level 0) replication event is interrupted for more than nine minutes (e.g., a
network outage), it will abort. Partial level 0 events are not recoverable, so the process must be
restarted.

 The KB per second maximum throttle parameter in /etc/snapmirror.conf can be changed at any
time, and the edited values will take effect within two minutes. The exception to this is mirror
initialization where a bandwidth throttle is already in effect. In this case, the bandwidth throttle
cannot be modified until the initialization phase is complete or the process is interrupted.

 Incremental updates will not start until the level 0 initialization is complete.
 Any incremental updates that are missed are simply skipped. Subsequent incremental updates

transmit any skipped data, so no data is lost.
 Incremental updates in progress will run to completion according to the configuration settings and

available network bandwidth. If a new incremental update is scheduled to start while an existing
update is in progress, it is considered a schedule miss and this is skipped.

 The SnapMirror process can be stopped and restarted at any time by issuing the following
command sequence on either filer:
 vol snapmirror off

 [arbitrary time interval]
 vol snapmirror on

As long as the target volume remains read-only during the time between turning the SnapMirror
process off and on, the mirror remains intact.

 To break the mirror, SnapMirror must be turned off, at which time the target volume will be placed
into read/write mode. In order to turn SnapMirror off, the following command should be executed
on the destination filer (in our testing environment, vol_name is vol2):
 vol options vol_name snapmirrored off

Note: The SnapMirror file can only be broken if a SnapMirror event is not in process.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

7

Disaster recovery—breaking the mirror
After creating a SnapMirror relationship between two filers we implemented the following test:

1. We created the following table on the database test_db. The database's data and log files were
located in the mssql directory on vol2 on bg:

DROP TABLE hammer_tab;

CREATE TABLE hammer_tab

 (value INT NOT NULL);

2. We then created the following stored procedure in the table hammer_tab:

USE test_db

 GO;

CREATE PROCEDURE add_data

AS

DECLARE @counter INT

SELECT @counter = 1

WHILE (@counter < 100000000000)

BEGIN

 INSERT INTO hammer_tab

 (value)

 VALUES

 (@counter);

PRINT 'Value is: ' + convert (varchar(6), @counter1) SELECT @counter =

@counter + 1

END

3. We then executed add_data from the SQL Server's Query Analyzer. With the procedure running,
we allowed several SnapMirror events to occur.

4. Toward the end of the ten-minute procedure run, we changed the SnapMirror interval in the
/etc/snapmirror.conf file to a less frequent mirror. We did this because we were about ready to
simulate a filer/SQL Server failure followed by a recovery of both servers. We did not want a
SnapMirror event to initiate once the filer recovery had completed. If an event was triggered, we
would not be able to break the mirror.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

8

5. Next we simulated the above-mentioned disaster with a goal of mimicking a complete loss of
service of both the filer and the database server. We did this in the following manner:

 Failed the source filer (bg) by powering it down
 Failed the SQL Server by turning off the MSSQLServer service while the query was still

running.

The failure of both the filer and the SQL Server resulted in the following activity from within the
Query Analyzer (note that the last row inserted has a key value of 150942):

(1 row(s) affected)

Value is: 1

(1 row(s) affected)

Value is: 2

(1 row(s) affected)

Value is: 3

(1 row(s) affected)

Value is: 4

... Many more like this ...
(1 row(s) affected)

Value is: 150939

(1 row(s) affected)

Value is: 150940

(1 row(s) affected)

Value is: 150941

(1 row(s) affected)

Value is: 150942

[Microsoft] [ODBC SQL Server Driver] [Named Pipes] ConnectionRead

(GetOverLappedResult()).

[Microsoft] [ODBC SQL Server Driver] [Named Pipes] Connection broken.

Connection Broken

6. After changing the mirror interval, we broke the mirror on vol2 (making lg's vol2 read/write) by
issuing the following command on lg:

vol options vol2 snapmirrored off

7. We then created a CIFS share (sqldb) pointing to the directory (mssql) on the SnapMirror
volume (vol2 on bg) in which the data resides.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

9

8. After creating the share, we created a new SQL Server database (test_db_new) that pointed to
the data and log files that were on lg's now read/write volume vol2. We did this by executing the
following statement from an ISQL prompt:

dbcc traceon (1807)

go

sp_attach_db 'test_db_new', '\\lg\sqldb\test_db_data.mdf',

'\\bg\sqldb\test_db_log.ldf'

go

dbcc traceoff (1807)

9. We then queried the hammer_tab table in both test_db and test_db_new to see if the data in the
table on each database matched. Following are the query scripts and their respective result sets:

Query on test_db:
USE test_db

SELECT * FROM hammer_tab

Result set from query on test_db:
value time

1

2

3

4

... Many more rows incremented by one ...

150939

150940

150941

150942

(150942 row(s) affected)

Query on test_db_new:
USE test_db_new

SELECT * FROM hammer_tab

Result set from query on test_db_new:
value time

1

2

3

4

... Many more rows incremented by one ...
130941

130942

130943

130944

(130944 row(s) affected)

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

10

Note that the key value for the source database matches precisely to that which was reported to the
client. This is consistently our experience: When an IBM N series filer experiences a dirty shutdown, no
transactions are lost, although the SQL Server may apply a recovery to the database on the source filer
(bg). However, the target database did lose approximately 20,000 rows over the ten minutes that the test
was run. This is to be expected. The mirror interval was set to 60 seconds, and the mirror relies on
consistency points. Thus, the mirror can be as much as two minutes out-of-date with the interval set in
this way. (A longer interval would result in more lost transactions, but also lower overhead.)

In our example, a total 150,942 rows were processed on the source database table. This is a rate of
15,094.2 rows per minute. Given that the mirror can be out-of-date by minutes, the number of rows that
did not mirror over to the target database table could have been as high as 30,188.4 (20% of the table).
The bottom line is that the target database can be created as a mirror of the source database, with a loss
of only a few very recent transactions. For a disaster recovery solution, this is perfectly acceptable to the
vast majority of customers.

Resyncing the mirror
If a volume is migrated, to reconfigure a mirror, simply change snapmirror.conf to match the source
system/volume/qtree name and configure the new source to allow transfers to the destination (use the
snapmirror.allow or /etc/snapmirror.allow option). That's it. There's no need to break and/or resynchronize
the mirrors. SnapMirror picks up where it left off.

While the ability to restart a broken mirror may be in future release, presently, the method for
reestablishing a mirror is to reinitialize the mirror. If the target volume has been brought online and then
written to, this may need to be done twice.

 Once to replicate the data back to the source volume. (In this case the mirror relationship
between the two filers is flipped.)

 Once to reinitialize with the mirror relationship back to normal.

An alternative is to back up the target volume's data to tape, and then restore that data onto the source
filer. This avoids the need to reinitialize the mirror twice; however, one cannot "seed" a mirror from tape.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

11

Conclusions
 The IBM System Storage N series with SnapMirror technology provides compelling advantages for the
SQL Server DBA seeking to support disaster recovery of a mission-critical SQL Server database.
Specifically:

 The network traffic generated by the mirror process can be throttled to allow support for WAN
connections.

 The mirror interval is user-configurable and can be changed on-the-fly.

 In the event of a disaster on the source side of the mirror, the target side can be easily brought
online, and the SQL Server database can return to normal use after a brief recovery process.

 The near real-time nature of SnapMirror software means that the source filer will still operate
normally when the network link to the target filer is broken. This is not true of synchronous
mirroring, where the mirror link is essential to continued operation of the source machine.

Using SnapMirror technology, the DBA can assure the customer that the only transactions that will be lost
are those that occur between the mirror events.

Support
Microsoft created dbcc trace flag 1807 to enable the storage of SQL Server databases on IBM
N series filers. This flag is required to successfully migrate or create SQL Server 7.0 or SQL Server 2000
databases on a filer. Databases can be placed on any network-attached device using this flag.

Caveats
Though this document provides a comprehensive overview of SnapMirror technology, additional reading
may be beneficial. See the IBM System Storage N series Systems Administrator's Guide or the Data
Protection Online Backup and Recovery Guide.

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

Microsoft SQL Server 2000 and IBM System Storage N series with SnapMirror technology

12

Trademarks and special notices
© International Business Machines 1994-2007. IBM, the IBM logo, System Storage, and other referenced
IBM products and services are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. All rights reserved

References in this document to IBM products or services do not imply that IBM intends to make them
available in every country.

Network Appliance, the Network Appliance logo, Data ONTAP, SnapMirror, Snapshot and WAFL are
trademarks or registered trademarks of Network Appliance, Inc., in the U.S. and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Any other trademarks, registered trademarks, company, product or service names may be trademarks,
registered trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

	Abstract
	Introduction
	Description of SnapMirror technology
	General assumptions and requirements
	Prerequisites
	Filer prerequisites
	SQL Server prerequisites
	Network prerequisites

	Setting up a SnapMirror process for SQL Server 2000 data file storage
	Step one (implemented on the source filer)
	Step two (implemented on the destination filer)
	Step three (implemented on both the source and destination filers)

	SnapMirror software operation
	Disaster recovery—breaking the mirror
	Resyncing the mirror
	Conclusions
	Support
	Caveats
	Trademarks and special notices

